An Inexact Sequential Quadratic Optimization Algorithm for Large-Scale Nonlinear Optimization
نویسندگان
چکیده
We propose a sequential quadratic optimization method for solving nonlinear constrained optimization problems. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the search direction (i.e., inexact subproblem solution) must satisfy so that global convergence of the algorithm for solving the nonlinear problem is guaranteed. The algorithm can be viewed as a globally convergent inexact Newton-based method. The results of numerical experiments are provided to illustrate the reliability and efficiency of the proposed numerical method.
منابع مشابه
An Inexact SQP Method for Equality Constrained Optimization
We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved using itera...
متن کاملAn Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization
We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the search direction (i...
متن کاملSequential Quadratic Programming forLarge - Scale Nonlinear Optimization ?
The sequential quadratic programming (SQP) algorithm has been one of the most successful general methods for solving nonlinear constrained optimization problems. We provide an introduction to the general method and show its relationship to recent developments in interior-point approaches. We emphasize large-scale aspects.
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملAn Interior Point Algorithm for Large-Scale Nonlinear Programming
The design and implementation of a new algorithm for solving large nonlinear programming problems is described. It follows a barrier approach that employs sequential quadratic programming and trust regions to solve the subproblems occurring in the iteration. Both primal and primal-dual versions of the algorithm are developed, and their performance is illustrated in a set of numerical tests.
متن کامل